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Consensus over directed static networks with arbitrary finite communication delays
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We study the consensus problem in directed static networks with arbitrary finite communication delays and
consider both linear and nonlinear coupling. For the considered networked system, only locally delayed
information is available for each node and also the information flow is directed. We find that consensus can be
realized whatever the communications delays are. In fact, we do not even need to know the explicit values of
the communication delays. One well-informed leader is proved to be enough for the regulation of all nodes’
final states, even when the external signal is very weak. Numerical simulations for opinion formation in

small-world and scale-free networks are given to demonstrate the potentials of our analytic results.

DOI: 10.1103/PhysRevE.80.066121

I. INTRODUCTION

A particularly interesting aspect of the dynamics in com-
plex networks is that certain types of globally collective be-
havior emerge from local interactions among the nodes
[1-4]. Such behavior arises ubiquitously in biological sys-
tems [5], ecosystems [6], and physical systems [7]. More-
over, there are many practical applications for the consensus
of complex networks including cooperative robotics, forma-
tion flying of unmanned aerial vehicles (UAVs) [8], and co-
ordinated control of land robots [9].

In networked coupled systems, consensus means to reach
an agreement among all nodes’ dynamics regarding a certain
quantity of interest that depends on the initial states of all
nodes [10-14]. The consensus behavior is realized via the
interconnections among the nodes. However, due to the finite
switching speed of amplifiers, time delay is ubiquitous at the
moment of information exchanges among the nodes in many
physical systems. The introduction of the communication de-
lays will largely increase the complexity and difficulty of the
consensus problem. Moreover, the directed information flow
is another important challenge for the consensus problem. In
this paper, we present results on the consensus problem in
directed networks with arbitrary finite communication de-
lays. By employing different techniques, we show that, under
linear coupling as well as nonlinear coupling, consensus will
eventually be realized for arbitrary finite communication de-
lays. That is, the consensus behavior is robust against com-
munication delays.

In the presence of communication delays, the final con-
sensus state of the networked system is very hard to predict.
For many physical, social, and biological systems, there is a
common need to regulate the final behavior of large en-
sembles of interacting nodes [15-18]. However, it is very
difficult and costly, if not impossible, to inform all the nodes
about the objective state because of the limited communica-
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tion abilities of individual nodes. Hence, new techniques are
strongly required to make the regulation process much easier
and cheaper for the complex network with arbitrary finite
communication delays. After detailed analyses, we shall
show that only one well-informed leader is enough for the
success of consensus regulation in networked coupled sys-
tems with arbitrary finite delays. Also such navigational sig-
nal could be very weak. Moreover, the obtained results will
be extended to complex networks with hierarchical structure.
The derived results are beneficial for better understanding of
emergent behavior in networked coupled systems.

II. LINEAR COUPLING

Let N'={1,2,...,N} be the set of nodes. We first consider
a set of N linearly coupled identical nodes, with each node
being an n-dimensional continuous dynamical system, in the
following form:

N
=2 alxi(t = 7)) = x(0], ieN, (1)
j=1

where x,(t) € R" denotes the state of node i, and 7;;>0 is the
communication delay from node j to node i for i#j and
7;=0. A=(a;)yxy is the adjacency matrix representing the
network topology of the complex network, and a;; is defined
as follows: if there exists information flow from node j to
node i, then a;;>0 (i # j); a;;=0 otherwise, and the diagonal
elements a;=0 for i € N. The coupling network among the
nodes is assumed to be strongly connected. The matrix A can
be symmetric (or asymmetric), which implies that the con-
figuration topology of the nodes can be undirected (or di-
rected).

Let A=(q; )vxn be the Laplacian matrix with its elements

— . . — N .

deﬁned_ as follows: a;;=a;; for i#j, and a;=-2_,a; for i
e N. A is irreducible since the corresponding network is

strongly connected.
Let é=(£,,&,...,&y)T be the normalized left eigenvector

of A with respect to the zero eigenvalue satisfying max,{&}
=1. By the Perron-Frobenius theorem [19], one obtains that
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&> 0 for i € N. Throughout this paper, the consensus of net-
worked system (1) is said to be asymptotically realized if
lim, . [|x;(1) —x;(1)][=0,V i,jeN.

A. Case of leaderless

In this section, we study the consensus seeking of the
linear coupling system (1). The following theorem shows
that consensus of linear system (1) is robust against commu-
nication delays.

Theorem 1. Consider the linear coupled system (1) with a
strongly connected graph G. Whatever finite communication
delays 7;; are, consensus is asymptotically reached for arbi-
trary 1n1t1a1 conditions. That is,

Y ielN, (2)

lim x;(r) — c,
—00
where ¢ € R” is a constant vector.
Proof. Since & is the left eigenvalue of matrix A corre-

sponding to eigenvalue zero, one has that €’A=0, which im-
plies that

N
> &ay. (3)

J=1j#i

we can obtain that

Further because a;;= Zj 19ij»

N N N N
E g,-a,-j = E fja” and E gjaﬂ = 2 fﬂ,’j- (4)
j=1 j=1 i=1 i=1

Consider the following Lyapunov functional:

V() = V(1) + V,(1), (5)
where
| N
Vi(r) = EE fixiT(l)xi(f) (6)
i=1
and
N N
Vs(0) = E 2 s,a,,xT(e)x (0)do. (7)

lljl

Differentiating the functional V(r) along the trajectories of
system (1) gives that

V() = Zg,x (0)75,(1)

= E 2 fiaij[xiT(f)Xj(f -

i=1 j=1

7i) =% (0x(0], (8)

and
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. 1
V(1) = 22 2 &ia /z[xiT(f)xi(f) —xiT(l - Ti)x(t = 7;)]
i=1 j=1
1
= 52 E £l (0x,(0)
i=1 j=1
- _E 2 glal]'x (t_ Tij)xj(t_ 7-ij)- (9)
l 1 j=1

Therefore, by combining Egs. (8) and (9), we obtain that

V(f) = Vl(t) + Vz(f)
1 N
- 52} Eailx! (0)x,(1) = 2x] ()x,(t = 7))
+ x~T(t - 7)x,(t = 7;)]
= —E E Ea;jlx(0) = x,(t = 7)1 Tx,(0) = x,(t = 7)]

1 1 j=1
=0. (10)

Hence, V(¢) is nonincreasing. V(:)=0 implies that
lim,_,., V() exists and is finite. Then, one can easily show
the boundedness of x;(r) for i e N by referring to the con-
struction of V(r). By referring to system (1), it can be con-
cluded that x,(t) is bounded for any i e N. Thus, we can
conclude that V(7) is also bounded by referring to the expres-
sion of V(7).

According to Barbalat s lemma [20], we get that
lim, .. &a;{x(1)—x(t- )]T[x (t)=x(t-;)]=0, ie.,
lim, . [x;(1)—x;(t— 7)) ]= O if a; >0. In addmon one can
conclude that xi(t) —>0 forie J\/.

Since the network is strongly connected, for each pair of
nodes i, j e N, one can find two constants 7; and 7; such
that x(t)—>x(t TU) and x;(1— 7 ") —x,(1). In fact the con-
stants 7' and le are certain linear comblnatlons of all com-
mumcatlon delays 7;;. Hence, x(t— 7 LT ) —x;(t) for each
i € N, which 1mphes that x;(t) tends to be periodic with the
constant period 7;;+7;. Noting the fact that x,(r) —0 as 7
— o0, we yield that X; (’t) tends to a steady state ¢; € R".

Since the matrix A is irreducible, it follows that the largest
invariant ~ manifold  of  system (1) is M
={x,(1),x,(8), ..., xn(2) | x;(£) =x,(t) = - - - =xp(¢)}. This implies
that there exists a constant vector ¢ € R” such that ¢;=c for
each i e N. Hence, x;(t) —c as t—o for i e N. Therefore,
regardless of the communication delay values and for arbi-
trary finite initial values, consensus of the directed intercon-
nected system (1) can be realized asymptotically. |

B. Case with one well-informed leader

Let us now consider the regulation of the networked
coupled system (1). It has been shown in Sec. IT A that con-
sensus among nodes can be realized whatever the finite com-
munication delays are. However, due to the injection of ar-
bitrary finite communication delays, the final consensus state
c is very hard to predict. While in many physical, social, and

066121-2



CONSENSUS OVER DIRECTED STATIC NETWORKS WITH ...

biological systems, there are usually some needs to regulate
the behavior of large ensembles of interconnected nodes
[15]. In many papers, it is assumed that all the nodes should
be informed about the objective state, but such a regulation
scheme is very difficult and expensive to implement.

In order to force the dynamics of the nodes onto a desired
trajectory, we include here a well-informed leader. Such a
well-informed leader exists in many natural processes [21]
such as genetic regulatory networks and biological systems.
In the following, we propose a much cheaper and easier-to-
implement method, in which only one of the nodes is in-
formed about the objective state to be reached.

Let the objective reference state be x*, and the regulation
of linear system (1) is said to be successful if x,(r) —x" as
t—oo for any i € N. The first node with state x; is chosen as
the well-informed leader. Then networked system (1) with
leader x; can be written as

N
60 =2 alx(t— 1) - x0]+u (), ieN, (11)
J=1

where

ui(z)z{_k[xl(t)_x*] for i=1

0 otherwise,

for k>0. Let ¢,(t)=x;(t)—x", we obtain the following regu-
lated dynamical system:

N
6 =2 ajleft— ) -] +u(r), ieN. (12)
j=1

The following theorem shows that one well-informed leader
is sufficient for an efficient regulation of networked system
(1).

Theorem 2. Consider the controlled system (11) with a
strongly connected graph G. Whatever finite communication
delays 7; are, the states of all nodes will be successfully
controlled to the objective state x*. That is,

lim x;(t) = x*, V iel, (13)

t—o

where x* € R” is the objective state.

Proof. Let é=(&,,&,...,&)T be the normalized left ei-
genvector of A with respect to the zero eigenvalue. Consider
the Lyapunov-Krasovskii  functional as E(1)=E(z)
+Ey(1) with  E\(0=33) &el(er)  and  Ey(1)
=%EZIE;V:]f’_TjigjaﬁeiT(ﬁ)ei(0)d9. By some calculations, the
derivative of the functional E(r) along the solution to system
(12) can be obtained as

N N
2 2 §iaij[€i(f) —ej(t- sz,‘)]T[ei(f) —e(t- Tij)]

i=1 j=1
— &kt (t)ey(1).

It is obvious that E(r)=0 if and only if e,(t)=e,(r—;) for
each pair of indexes (i,j) satisfying a;>0 and e;(z)=0.
Hence, the set S={e,(1)=0,e,(r)=¢;(t—7;) for (i,j) satisfy-
ing a;;>0} is the largest invariant set contained in E(1)=0

E(t):—%
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for system (12). Then by using the well-known invariance
principle of functional differential equations [22], the orbit of
system (12) converges asymptotically to the set S. That is,
e(t)—ej(t—7;) for each pair (i,j) satisfying a;;>0 and
e,(t)—0 as t—0. By a similar analysis as in theorem 1, it
follows that e,(t)—e;(t) for any i and j and further that
e;(t)— 0 for i € . Hence, all the nodes have been regulated
to the objective state x* by only informing one of the
nodes. |

Remark 1. The advantage of this scheme is that we do not
need to inform all the nodes about the objective state. In-
stead, we proved that regulation process will be successful
by only informing one of the nodes about the objective state,
which will be spread efficiently via numerous local connec-
tions. It should be noted that any node can be chosen as the
well-informed leader and then the objective state will be re-
alized. The “strongest” node with the highest out-degree
should be a good choice to make the regulation process ef-
fective. The feedback strength k is just required to be posi-
tive; i.e., the strength of the external signal can be very weak.
Hence, the proposed regulation scheme is simple and cheap
to implement.

III. NONLINEAR COUPLING

Now, we generalize the above approach to the wider class
of nonlinearly coupled systems. Consider the following non-
linearly coupled system with directed information flow:

N

x(1) = 2 a;{hlx(t = 7)) = hlx (1)}, ie N, (14)

J=Lj#i

where x;(t) € R denotes the state of node i at time 7. Let 7
=max; {7;}. Throughout this section, the function A(-):R
— R is assumed to be strictly increasing. Without loss of
generality, we assume that /(0)=0.

In the following theorem, we prove that the consensus of
the nonlinearly coupled system (14) is also quite robust
against the communication delays.

Theorem 3. Suppose that the graph G is strongly con-
nected. Then, for nonlinear system (14), consensus can be
realized globally for all initial conditions and arbitrary finite
communication delays 7;;. That is,

vV iel, (15)

lim x;(¢) — ¢,

t—

where ¢ € R is a constant.
Proof. Let x(t)=[x! (1),x3(1), ... ,x(t)]" and consider the
following Lyapunov-Krasovskii functional as

W(x()) = Wy(x(1)) + Wy(x(1)), (16)
where
N
Wi(x(1) =X & f h(s)ds
i=1 0
and
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Wo(x(1) = EE Eahx,(0)1d0.

11]1 —Tjj

Now, differentiating the functions V(x(¢)) and V,(x(r)) along
the solution of system (14), we yield

N N
W, (x(1)) = > §ih[xi(l)]2 a;{hlx(t = 7)1 = hlx(t) I}
P =

N N

= —2 > &Ea;{2hLx(0) Jhlx (1 -

lljl

7)1 = 217 [x,(0]T},

and from Eq. (4), it follows that

EE& ai{hx, ()] = K[x(t = 7)1}

11]1

Wa(x(1) =

2 f,a]zz h [-x (t)] - E 2 gal]h [-x (t ])]

lljl

= _E E ‘ftaljhz[x (t)] - E 2 glaljh2[x (t j)]

z 1 j=1 l 1 j=1
N N

= _2 E glal] hz[x ([)] hz[x (t ])]}
l 1 j=1

Therefore, we obtain that
N N

W(x() = - 2 > &athlx (0] = hlx;(t = )] < 0.

zl/l
(17)

Let S={x(): V(x(1))=0}. Since &>0 for i e N, it follows
from Eq. (17) that S={xeC(t-T, t],RN):a,»j{h[xi(t)]
—h[x;(t=7;)]}=0}. It can be concluded that the set S is in-
variant with respect to system (14). By using the LaSalle
invariance principle [22], we get that x—S& as — +%.
Hence, for any ordered pair of subscripts i and j satisfying
a;#0, we have h[x,(1)]-h[x;(t—7;)]—0 as r—+. Since
h(-) is strictly increasing with h(0)=0, we yield that
lim,_..[x,(£) =x;(t~7;;)]=0 when a;; #0.

Since the graph G is strongly connected, for any ordered
pair of distinct nodes i and j, one can find a directed path
from node i to node j and simultaneously a directed path
from node j to node i. Hence, for each pair of nodes i, j
e N, one can find two constants 7; i and Tﬂ, which are certain
linear combinations of all commumcatlon delays 7;; such that
x{(t) = x,(t-, ) and x,(t— 7 )—>x (t). Hence, x(t T le)
— x;(1) holds for eachie N Wthh 1mphes that x;(r) tends to
be periodic with the constant period 7'lj+ 7}1 It follows from
Eq. (14) that x,(f) —0. Consequently, we obtain that x;(¢)
tends to a constant ¢; € R as r—o°.

According to the facts that A is irreducible and x;(r) — c;,
we conclude that the largest invariant set of system (14) is
M={x,(1),x,(1), ..., xn(t) | x; () =x,(t) = - - - =x,(1)}. This im-
plies that there exists a common constant ¢ such that ¢;=c
€ R for each i e V. Hence, x,(t) —c as t— .

Remark 2. If communication delays are not included [i.e.,
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7,;=0 in Eq. (14)], the nonlinearly coupled system (14) be-
comes the model as discussed in [23] and our result in theo-
rem 3 still holds. Therefore, theorem 3 can be regarded as a
generation of the nonlinear consensus problem without com-
munication delays discussed in [23].

IV. HIERARCHICAL STRUCTURE

The above results hold under the assumption that the net-
work structure is strongly connected. However, for many real
life networks, from machines to government, this condition
is not satisfied. A typical example is the consensus decision
making among a group of people, in which underlings usu-
ally have few or no influence on their big bosses while the
bosses always have great influence on the underlings. In such
systems, the individual nodes are divided into several levels
and, hence, form a hierarchical structure. In this section, we
study the networked coupled system with hierarchical topol-
ogy.

Consider a networked coupled system with N=X m
nodes. The N nodes are divided into p different groups with
m; nodes in the ith group. The graph generated by the local
connections of the nodes is assumed to have a rooted di-
rected spanning tree [25]. In real life systems, this condition
is not restrictive due to the ubiquitous existence of hierarchi-
cal structure.

Let A be the coupling matrix of the networked coupled
system with hierarchical structure in the form of

Ay Ap o Ay
0 0 P App

after certain permutations. Here the matrices A, € R™+"4 are
irreducible for g=1,2,...,p. Due to the existence of rooted
directed spanning trees, we obtain that for each g(g<p),
there must exist a k> ¢ such that A, #0.

The nodes denoted by the matrix A, can be regarded as
the leader group in the complex network. From theorem 1,
consensus will be first realized in the pth group due to the
irreducibility of A,,,. Then the consensus state will be propa-
gated to the nodes in (p—1)th group due to the existence of
the nonzero matrix A,_; , by using theorem 2. By induction,
we obtain that consensus of N nodes will eventually be real-
ized. A typical example of such consensus transmitted
mechanism is the chain of president-governor-mayor in a
governmental system. Moreover, the regulation of such a
networked coupled system with hierarchical structure can
also be realized by choosing a node within the leader group
as the well-informed leader.

V. NUMERICAL EXAMPLES

In this section, numerical examples will be given to dem-
onstrate the derived theoretical results. Throughout the ex-
amples, all communication delays are uniformly distributed
in (0,1). The initial conditions are also randomly chosen
from (=5,5). It will be shown that the consensus process and
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FIG. 1. (Color online) Convergence time vs communication de-
lays for opinion formation in small-world network, which is gener-
ated by setting N=100, k=4, and p=0.01 [24].

the regulation are effective even for large-scale networks.
As the first example, networked coupled system with lin-
ear coupling (1) is considered. The connecting topology
among the nodes is assumed to be a small-world directed
network [24]. Opinion formation in small-world network
[26] is simulated to see how number of nodes and commu-
nication delay affect the convergence time of reaching the
consensus. Figure 1 shows that the consensus time increases
with the increment of communication delay 7;;=7. We also
studied how the consensus time changes as a function of the
number of nodes. Figure 2 shows that the consensus time
increases on the whole when the number of people increases.
Furthermore, the consensus seeking and controlling of 1000-
node small-world networks are, respectively, simulated in
Figs. 3 and 4. In the simulations, the initial degree of nodes
and adding probability of directed edges are, respectively,

1.2

1.1r b

1k 4

o
©
T
.

o
©
T
.

convergence time (s)
o o
o N
T T
. .

o
2
T
.

0.3 b

02l | | |
50 100 150 200 250 300

Number of nodes

FIG. 2. (Color online) Convergence time vs number of nodes for
opinion formation in small-world network, which is generated by
setting k=4 and p=0.01 [24].
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Consensus seeking of 1000 nodes with small-world coupling
N T T T T T

3
t(s)

FIG. 3. (Color online) Consensus of 1000 nodes (three dimen-
sions) with small-world coupling topology, which is generated by
setting k=4 and p=0.02 [24]. Same initial conditions and different
communication delays are used for two subfigures.

chosen as k=4 and p=0.02 [24]. The dimension of each node
is set to be n=3. It follows from theorem 1 that consensus of
these nodes will be realized. Our simulation results are
shown in Fig. 3. We observe that, even under the same initial
conditions, the final agreement states could be distinct due to
different communication delays. Hence, an external control-
ler is needed if we want to force the final consensus state
onto the original point x*=0. The node with maximum out-
degree 38 is selected to be the well-informed leader with k
=1 (a relative weak and low cost signal compared with the
out-degree 38). Numerical results are depicted in Fig. 4,
which clearly show power of the proposed scheme.

For the second example, we consider the nonlinear
coupled system (14). The nonlinear function is set as h(x)
=ax+sin(x). It is obvious that A(-) is a strictly increasing
function when @=1, but A(-) is not strictly increasing when
a<1. A Barabasi-Albert (BA) scale-free network [27] is
used to describe the coupling structure of networked system
(14). The parameters for constructing the scale-free network
are chosen as m=my=3. After generation of the scale-free

Consensus controlling of 1000 nodes with small-world coupling
T T T T T

X

1 1
2 25 3

X

L L L L

15 25 3
t(s)

FIG. 4. (Color online) Consensus of 1000 nodes (dimension
three) with small-world coupling with one well-informed leader.
Small-world network is generated by setting k=4 and p=0.02 [24].
The node with maximum out-degree 38 is controlled with feedback
gain 1. Initial conditions and communication delays are both differ-
ent between two subfigures.
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Consensus of 100 scale-free coupled nodes with h(xi):2xi+sin(xi)

T T T

t(s)

1 15 2 25 3
t(s)

FIG. 5. (Color online) Consensus of nonlinearly scale-free
coupled system with @=2. BA scale-free network composing of
100 nodes is obtained by taking m=my=3 [27]. Dimension of each
agent is one.

network, each directed edge is assigned a weighted value
which is uniformly distributed in the interval [1,2]. The di-
mension of each node is set to be 1. From theorem 3, we
conclude that consensus of this nonlinearly coupled system
can be realized if «=1. From Fig. 5, we can observe that
consensus is indeed successful when a=2. However, for «
=0.2, consensus cannot be guaranteed by theorem 3 (see Fig.
6).

VI. CONCLUSION AND DISCUSSIONS

Consensus in a complex network has been studied in this
paper under the constraint of directed information flow and
arbitrary finite communication delays. We consider both lin-
ear coupling and nonlinear coupling. Compared with the ex-
isting results, our analyses and method yield the following
results: (i) the information flow between each pair of nodes
can be asymmetrical; (ii) communication delays can be arbi-
trary finite and unknown; (iii) only one well-informed leader
is sufficient to guarantee the successful regulation process;
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Consensus failure of 100 scale-free coupled nodes with h(xi)=0_2xi+sin(xi)
10 T T T T

1

x(t)

FIG. 6. (Color online) Consensus failure of nonlinearly scale-
free coupled system with a=0.2. BA scale-free network composing
of 100 nodes is obtained by setting m=my=3 [27]. Dimension of
each agent is one.

(iv) the external signal pinned to the leader can be very
weak. Items (iii) and (iv) make the regulation process very
easy and cheap to implement. The studied models are very
close to real life, and the derived results would be valuable
for the understanding of emergent and/or self-organized be-
haviors in social and biological systems.

Some difficult yet important problems about consensus
remain to be further explored. In many applications, the in-
teraction topology between nodes may change dynamically.
For example, communication links between nodes may be
unreliable due to disturbances and/or subject to communica-
tion range limitations. If information is being exchanged by
direct sensing, the locally visible neighbors of a vehicle will
likely change over time. Hence, our future investigations will
consider the consensus problem over adaptive networks with
time-varying delays [14,28].
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